
Chapter 8: An Introduction to Networks

Network models are an extremely important category of mathematical program that have
numerous practical applications. Part of their appeal is the direct and intuitive mapping
between the real world, the network diagram, and the underlying solution algorithms.
Many network problems can be solved via linear programming, and in fact, special
extremely fast variants of linear programming can be applied. The largest mathematical
programs that are regularly solved in practice, e.g. airline crew scheduling problems, are
usually network problems.

For many types of network problems there are also specialized non-LP solution
algorithms. We will first look at some of the classic non-LP solution methods, and later
return to the idea of solving networks via LP.

Basic Definitions

Network models are created from two major building blocks: arcs (sometimes called
edges), which are connecting lines, and nodes, which are the connecting points for the
arcs. A graph is a structure that is built by interconnecting nodes and arcs. A directed
graph (often called a digraph) is a graph in which the arcs have specified directions, as
shown by arrowheads. Finally, a network is a graph (or more commonly a digraph) in
which the arcs have an associated flow. Some example diagrams are given in Figure 8.1.

Here are some simple examples of networks:

nodes arcs flow

cities highways vehicles

call switching centers telephone lines telephone calls

pipe junctions pipes water
There are some further definitions associated with graphs and networks:

chain: a sequence of arcs connecting two nodes i and j. For example, in Figure 8.1(a), we
might connect nodes A and E via the chains ABCE or ADCE.

path: a sequence of directed arcs connecting two nodes. In this case, you must respect
the arc directions. For example, in Figure 8.1(b), a path from A to E might be ABDE, but
the chain ABCE is not a path because it traverses arc BC in the wrong direction.

cycle: a chain that connecting a node to itself without any retracing. For example, in
Figure 8.1(a), ABCEDA is a cycle, but ABCDECBA is not a cycle because of the double
traversal of arcs AB and BC.

connected graph (or connected network): has just one part. In other words you can reach
any node in the graph or network via a chain from any other node. It is sometimes

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

important to know whether a graph is connected and there are efficient computer
algorithms for checking this.

tree: a con

spanning
that all of
interesting
computer
among the

Practica
http://www.sc

B

C

D
E

A

(a) a graph (b) directed graph (digraph)

A B C

D
E

Figure 8.1: Graphs and directed graphs.
nected graph having no cycles. Some examples are shown in Figure 8.2(a).

tree: normally a tree selected from among the arcs in a graph or network so
 the nodes in the tree are connected. See Figure 8.2(b). Spanning trees have
 applications in services layout, for example, finding a way to lay out the

 cable connecting all of the buildings on a campus (nodes) by selecting from
 possible inter-building connections (arcs).
(a) two trees (b) two spanning trees

Figure 2: Examples of trees and spanning trees.
l Optimization: a Gentle Introduction John W. Chinneck, 2000
e.carleton.ca/faculty/chinneck/po.html

2

flow capacity: an upper (and sometimes lower) limit on the amount of flow in an arc in a
network. For example, the maximum flow rate of water in a pipe, or the maximum
simultaneous number of calls on a telephone connection.

source (or source node): a node which introduces flow into a network. This happens at
the boundary between the network under study and the external world.

sink (or sink node): a node which removes from the network. This happens at the
boundary between the network under study and the external world.

The Shortest Route Problem

Here is a technical statement of the shortest route problem: given a graph in which each
arc is labeled with the distance between the two nodes that it connects, what is the
shortest route between some
node i and some other node j
in the graph? For example,
consider the graph in Figure
8.3: what is the shortest route
between node A and node H?
What is the length of the
shortest route?

In a graph this small, it is
possible to solve the problem
by simple inspection: try this
for the graph in Figure 8.3.
However, if the graph is quite
large, a more organized approach is needed. Brute force enumeration of all of the
possible routes is impractical in large graphs because the number of possible routes is
combinatorially explosive. Try tracing out all of the routes between nodes A and H in
Figure 8.3 for example: there are quite a few!

A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

Figure 8.3: Find the shortest route from A to H.

Note that “shortest route problem” is also the name applied when the arc labels are not
distances, but perhaps travel time (quickest route problem) or travel cost (cheapest route
problem). The solution methods are identical in all cases.

We will look first at one of the most popular methods for finding the shortest route in a
graph or network: Dijkstra’s algorithm. It is an iterative method. At the nth iteration you
will find the nth closest node to the start node (the origin), and the shortest route to that
node. You stop iterating when the destination node is reached, even if you have not
visited all of the nodes in the network.

All of the nodes in the network are initially “unsolved”. A node is “solved” at each
iteration when the shortest distance and route to that node is found. The length of the
shortest path from the origin to a node is the “distance”: a node is solved when the
distance is determined. By definition (and common sense), the distance from the origin

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

node to the origin node is zero. Arcs which may form part of the shortest route are
gradually added to the “arc set” as the method proceeds; the arc set is initially empty.
Note that the method ventures up some blind alleys as it proceeds: not all of the arcs that
are added to the arc set will feature in the final shortest route!

Here is a statement of Dijkstra’s algorithm:

0. To initialize:

a. the origin is the only solved node.

b. the distance to the origin is 0.

c. the arc set is empty.

1. Find all the unsolved nodes that are directly connected by a single arc to any
solved node. For each unsolved node, calculate all of the “candidate distances”
(there may be several of these for one unsolved node because it may directly
connect to more than one solved node):

a. choose an arc connecting the unsolved node directly to a solved node.

b. the “candidate distance” is (distance to solved node) + (length of arc
directly connecting the solved and the unsolved node)

2. Choose the smallest candidate distance:

a. add the corresponding unsolved node to the solved set.

b. distance to the newly solved node is the candidate distance.

c. add the corresponding arc to the arc set.

3. If the newly solved node is not the destination node, then go to step 1.
Else, stop and recover the solution:

a. length of shortest route from origin to destination is the distance to the
destination node.

b. shortest route is found by tracing backwards from the destination node to
the origin (or the reverse) using the arcs in the arc set. It is usually easiest
to trace backwards because each node is reached from exactly one other
node, but may have outward arcs to several other nodes.

You can keep track of the progress of the algorithm by constructing a table with headings
such as iteration number, unsolved node connected to solved node, candidate distances
and arcs, selected node, distance and arc. However, for relatively small problems it is
easier to keep track by making notations directly on the diagram. We will use the
following conventions for tracking the algorithm on a diagram:

• mark the solved nodes in boldface and label them with the distance,

• mark the arcs in the arc set in boldface.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

4

Let us follow the progress of
Dijkstra’s algorithm as we
apply it to the network shown
in Figure 8.3. We will omit the
initial diagram in which only
node A, the origin, is solved,
and so shown in boldface and
labeled with the distance 0. At
this point, there are 3 unsolved
nodes to consider (B, C, and D)
because they are directly

node (A). The candidate
distances are AB (0+3=3), AC
(0+2=2), and AD (0+5=5).
The smallest candidate distance
is AC, so C is now a solved
node with a distance of 2 as
shown in Figure 8.4.

connected to the only solved

Now there are 3 unsolved

There are again 3 unsolved

Now the unsolved nodes to

nodes to consider (B, D, and
E). Candidate distances are AB
(0+3=3), AD (0+5=5), CD
(2+2=4), and CE (2+5=7). The
smallest candidate distance is
AB at 3, so B is now a solved
node, as shown in Figure 8.5.

nodes to consider (F, D, and
E). Candidate distances are BF
(3+13=16), BD (3+2=5), AD
(0+5=5), CD (2+2=4), and CE
(2+5=7). The smallest
candidate distance is CD at 4,
so D is now a solved node, as
shown in Figure 8.6.

consider are F, G, and E.
Candidate distances are BF
(3+13=16), DF (4+6=10), DG
(4+3=7), DE (4+4=8), and CE
(2+5=7). The smallest
candidate distance is 7 with a

Practical Optimization: a Gen
http://www.sce.carleton.ca/faculty/chinneck/po.htm

A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

0

2

Figure 8.4: First closest node to A is C.
A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

0

2

3

Figure 8.5: Second closest node to A is B.
Figure 8.6: Third closest node to A is D.

A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

0

2

3

4
A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

0

2

3

4

7 7

Figure 8.7: 4th and 5th closest nodes to A are E and G (tied).
tle Introduction John W. Chinneck, 2000
l

5

tie between DG and CE. We
can choose either candidate
arbitrarily and update the
diagram accordingly,
however we know that the
candidate not chosen this
time will definitely be chosen
in the next iteration, so we
might as well update both
candidates at once, as shown
in Figure 8.7.

A
0

Figure 8.8: 6th closest node to A is F.

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

2

3

4

7 7

9

Now there are only two unsolved nodes to consider: F and H. The candidate distances
are BF (3+13=16), DF (4+6=10), GF (7+2=9), and GH (7+6=13). The smallest candidate
distance is 9, so F is now a solved node, as shown in Figure 8.8.

Finally there is only one
remaining unsolved node: H.
The candidate distances are
FH (9+3=12) and GH
(7+6=13). So H becomes a
solved node with a distance
of 12, as shown in Figure 8.9.
Since H is the destination
node, the iterations stop. We
visited every node in the
network in this small
example, but this will not
always happen.

A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3

4

6

2

3

6

0

2

3

4

7 7

9

12

Figure 8.9: 7th closest node to A is H. Finished!

At this point, we know that the length of the shortest route from A to H is 12 units
(kilometers perhaps). But how do we determine the route? Simply trace backwards from
H to A, and then reverse the route that you find in this manner. In Figure 8.9, the reverse
route is HFGDCA, and when given in the forward order this is ACDGFH. The reason for
finding the route in this manner is that working backwards avoids the blind alleys that
exist in the forward direction.

Note that you may sometimes find a tie in the routing to an intermediate node. For
example, if arc BC had a length of 1, then there would be two routes from A to D with
length 4: ACD as selected in the diagram, and ABD. It doesn’t matter which one you
use. In fact, you can mark both choices on the diagram as you proceed, which will
remind you of the alternate routes.

What makes Dijkstra’s algorithm efficient is that it calculates the lengths of only a very
small subset of all of the possible routes through the graph. Once a node has been solved,
the shortest path to the node from the origin is known. All paths that follow on from that

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

node then have the benefit of the shortest path to that point. The method is actually a
specific implementation of a dynamic programming algorithm (covered later).

It is easy to modify Dijkstra’s algorithm for use on directed graphs. You simply need to
respect the arc directions when selecting candidate connections between solved and
unsolved nodes. Think of it as finding the shortest route through a system of one-way
streets.

The Minimum Spanning Tree Problem

The technical statement of the minimum spanning tree problem is simple: given a graph
in which the arcs are labeled with the distances between the nodes that they connect, find
a spanning tree which has the minimum total length. Recall that a spanning tree connects
all of the nodes in the graph, and has no cycles.

As for the shortest route problem, the arc labels could as well be related to time or cost.
There are many examples of applications of the minimum spanning tree problem:

• Find the least cost set of roadways among the possible set of roadways to connect
a set of locations.

• Find the shortest total length of sewer to lay among the buildings in a planned
subdivision, given the set of possible inter-building sewer routes.

• Find the minimum total length of telephone cable to connect all of the offices in a
building, given the possible routings of cable between offices.

The algorithm for solving this problem is probably the simplest that you will ever learn in
mathematical programming:

0. Initialize: all nodes are unsolved, no arcs are in the arc set.

1. Select any node arbitrarily and label it as solved. Connect this node to its nearest
neighbour: label the neighbour solved and add the connecting arc to the arc set.

2. Identify the unsolved node that is closed to a solved node. Label this node as
solved and add the connecting arc to the arc set.

3. If all nodes are solved, then stop. Else go to Step 2.

Upon termination of the algorithm, the minimum spanning tree is given by the arcs in the
arc set, and the length of the minimum spanning tree is found by summing the lengths of
the arcs in the arc set.

In the case of a tie for the next solved node, choose arbitrarily. You will obtain the same
final optimum solution, but it indicates that there are multiple optima. You will need to
go back and enumerate them all if you need them.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

There is again a simple diagrammatic convention for keeping track of the steps of the
algorithm: show the solved nodes and the arcs in the arc set in boldface as you proceed.
Let us apply this convention while solving the minimum spanning tree problem for the
graph in Figure 8.3 that we already used for the shortest route problem. Let us begin
arbitrarily at node E, and label the nodes with the order in which they are solved, while
keeping track of all of the
notations on a copy of the

 distance of 4
units, so node D is the 2nd

 is 2 (CD or
BD), so we choose CD arbitraril

BD), so we choose BD arbitraril

(AC), so this is chosen. Node A

3, GE=6).
the 6th solved node.

solved node.

and HG=6. HF is chosen, so H i

3 + 2 + 3 = 18. The total length

graph in Figure 8.10.

The closest node to node E is
node D at a

solved node.

Candidate unsolved nodes
are now B (BD=2), A
(AD=5), C (CD=2, CE=5), F
(FD=6), and G (GD=3,
GE=6). The smallest
connecting length

Nodes E, D, and C are now solv
(BD=2), F (FD=6), and G (GD

Nodes E, D, C and B are now s
AC=2), F (FB=13, FD=6) and

Nodes E, D, C, B and A are n
FD=6), and G (GD=

Nodes E, D, C, B, A and G are
FD=6, FG=2), and H (HG=6).

Finally, all nodes are solved exc

Now the solution can be recover
the arc set (i.e. all of the arcs sh
the shortest route solution in wh
solution. The total length of the
of all of the arcs in the arc set: E

Practical Optimization: a G
http://www.sce.carleton.ca/faculty/chinneck/po.h

A

B

C

D

E

F

G

H

3

5

2
2

5

2

13

6

3
4

6

2

3

6

1st

2nd

3rd

4th

5th

6th

7th

8th

Figure 8.10: Finding the minimum spanning tree.
y. Node C is the 3rd solved node.

ing length is 2 (AC or
y. Node B is the 4th solved node.

e smallest connecting length is 2
 is the 5th solved node.

 The smallest connecting length is 3 (GD), so node G is

allest connecting length is 2 (FG), so F is the 7th

nnecting lengths are HF=3
s the 8th and last solved node.

+ 2 + 2 + 2 +
of the minimum spanning tree is 18 units.

ed. Candidate unsolved nodes are A (AC=2, AD=5), B
=3, GE=6). The smallest connect

olved. Candidate unsolved nodes are A (AB=3, AD=5,
G (GD=3, GE=6). Th

ow solved. Candidate unsolved nodes are F (FB=13,

 now solved. Candidate unsolved nodes are F (FB=13,
The sm

ept node H. The candidate co

ed. The minimum spanning tree itself is all of the arcs in
own in bold in Figure 8.10). Note how this differs from
ich not all of the arcs in the arc set are part of the final

 minimum spanning tree is found by summing the lengths
D + DC + DB + CA + DG + GF + FH = 4

entle Introduction John W. Chinneck, 2000
tml

8

Practical Optimization: a Gentle Introduction John W. Chinneck, 2000
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

Note that you will get the identical total of 18 units no matter which node you choose as
the initial node (try it yourself). There is more than one spanning tree that gives this
same result, however. We know this because of the arbitrary choice we made in solving
the 3rd node.

The solution method for the minimum spanning tree problem is an example of a greedy
algorithm. A greedy algorithm does whatever is best at the current step, without ever
considering what the impact might be on the overall problem. This is usually a bad idea
in optimization because it leads to a solution that is less than optimal overall. However,
just choosing the closest unsolved nodes leads to an overall optimum solution in this
special case.

The algorithm for a maximum spanning tree is obvious: simply choose the longest solved-
to-unsolved node connection at each step. You might want a maximum spanning tree in
a case where profit is involved, for example, choosing television cable routings to
connect a set of locations. The extension to directed graphs is also straightforward: you
can only select from among arcs that connect in the direction that you are working (either
away from the initial node, or towards the initial node).

	Chapter 8: An Introduction to Networks
	Basic Definitions
	The Shortest Route Problem
	The Minimum Spanning Tree Problem

