
Chapter 8: An Introduction to Networks 

Network models are an extremely important category of mathematical program that have 
numerous practical applications.  Part of their appeal is the direct and intuitive mapping 
between the real world, the network diagram, and the underlying solution algorithms.  
Many network problems can be solved via linear programming, and in fact, special 
extremely fast variants of linear programming can be applied.  The largest mathematical 
programs that are regularly solved in practice, e.g. airline crew scheduling problems, are 
usually network problems. 

For many types of network problems there are also specialized non-LP solution 
algorithms.  We will first look at some of the classic non-LP solution methods, and later 
return to the idea of solving networks via LP. 

Basic Definitions 

Network models are created from two major building blocks: arcs (sometimes called 
edges), which are connecting lines, and nodes, which are the connecting points for the 
arcs.  A graph is a structure that is built by interconnecting nodes and arcs.  A directed 
graph (often called a digraph) is a graph in which the arcs have specified directions, as 
shown by arrowheads.  Finally, a network is a graph (or more commonly a digraph) in 
which the arcs have an associated flow.  Some example diagrams are given in Figure 8.1.  

Here are some simple examples of networks: 

nodes arcs flow 

cities highways vehicles 

call switching centers telephone lines telephone calls 

pipe junctions pipes water 
There are some further definitions associated with graphs and networks: 

chain: a sequence of arcs connecting two nodes i and j.  For example, in Figure 8.1(a), we 
might connect nodes A and E via the chains ABCE or ADCE. 

path: a sequence of directed arcs connecting two nodes.  In this case, you must respect 
the arc directions.  For example, in Figure 8.1(b), a path from A to E might be ABDE, but 
the chain ABCE is not a path because it traverses arc BC in the wrong direction. 

cycle: a chain that connecting a node to itself without any retracing.  For example, in 
Figure 8.1(a), ABCEDA is a cycle, but ABCDECBA is not a cycle because of the double 
traversal of arcs AB and BC. 

connected graph (or connected network):  has just one part.  In other words you can reach 
any node in the graph or network via a chain from any other node.  It is sometimes 
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important to know whether a graph is connected and there are efficient computer 
algorithms for checking this. 

tree: a con

spanning 
that all of
interesting
computer
among the

Practica
http://www.sc
 

B 

C 

D 
E 

A 

(a) a graph (b) directed graph (digraph) 

A B C 

D 
E 

 

Figure 8.1: Graphs and directed graphs. 
nected graph having no cycles.  Some examples are shown in Figure 8.2(a). 

tree:  normally a tree selected from among the arcs in a graph or network so 
 the nodes in the tree are connected.  See Figure 8.2(b).  Spanning trees have 
 applications in services layout, for example, finding a way to lay out the 

 cable connecting all of the buildings on a campus (nodes) by selecting from 
 possible inter-building connections (arcs). 
(a) two trees                                   (b) two spanning trees 
 

Figure 2: Examples of trees and spanning trees. 
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flow capacity: an upper (and sometimes lower) limit on the amount of flow in an arc in a 
network.  For example, the maximum flow rate of water in a pipe, or the maximum 
simultaneous number of calls on a telephone connection. 

source (or source node): a node which introduces flow into a network.  This happens at 
the boundary between the network under study and the external world. 

sink (or sink node): a node which removes from the network.  This happens at the 
boundary between the network under study and the external world. 

The Shortest Route Problem 

Here is a technical statement of the shortest route problem: given a graph in which each 
arc is labeled with the distance between the two nodes that it connects, what is the 
shortest route between some 
node i and some other node j 
in the graph?  For example, 
consider the graph in Figure 
8.3: what is the shortest route 
between node A and node H?  
What is the length of the 
shortest route? 

In a graph this small, it is 
possible to solve the problem 
by simple inspection: try this 
for the graph in Figure 8.3.  
However, if the graph is quite 
large, a more organized approach is needed.  Brute force enumeration of all of the 
possible routes is impractical in large graphs because the number of possible routes is 
combinatorially explosive.  Try tracing out all of the routes between nodes A and H in 
Figure 8.3 for example: there are quite a few! 
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Figure 8.3: Find the shortest route from A to H. 

Note that “shortest route problem” is also the name applied when the arc labels are not 
distances, but perhaps travel time (quickest route problem) or travel cost (cheapest route 
problem).  The solution methods are identical in all cases. 

We will look first at one of the most popular methods for finding the shortest route in a 
graph or network: Dijkstra’s algorithm.  It is an iterative method.  At the nth iteration you 
will find the nth closest node to the start node (the origin), and the shortest route to that 
node.  You stop iterating when the destination node is reached, even if you have not 
visited all of the nodes in the network. 

All of the nodes in the network are initially “unsolved”.  A node is “solved” at each 
iteration when the shortest distance and route to that node is found.  The length of the 
shortest path from the origin to a node is the “distance”: a node is solved when the 
distance is determined.  By definition (and common sense), the distance from the origin 
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node to the origin node is zero.  Arcs which may form part of the shortest route are 
gradually added to the “arc set” as the method proceeds; the arc set is initially empty.  
Note that the method ventures up some blind alleys as it proceeds: not all of the arcs that 
are added to the arc set will feature in the final shortest route! 

Here is a statement of Dijkstra’s algorithm: 

0. To initialize: 

a. the origin is the only solved node. 

b. the distance to the origin is 0. 

c. the arc set is empty. 

1. Find all the unsolved nodes that are directly connected by a single arc to any 
solved node.  For each unsolved node, calculate all of the “candidate distances” 
(there may be several of these for one unsolved node because it may directly 
connect to more than one solved node): 

a. choose an arc connecting the unsolved node directly to a solved node. 

b. the “candidate distance” is (distance to solved node) + (length of arc 
directly connecting the solved and the unsolved node) 

2. Choose the smallest candidate distance: 

a. add the corresponding unsolved node to the solved set. 

b. distance to the newly  solved node is the candidate distance. 

c. add the corresponding arc to the arc set. 

3. If the newly solved node is not the destination node, then go to step 1. 
Else, stop and recover the solution: 

a. length of shortest route from origin to destination is the distance to the 
destination node. 

b. shortest route is found by tracing backwards from the destination node to 
the origin (or the reverse) using the arcs in the arc set.  It is usually easiest 
to trace backwards because each node is reached from exactly one other 
node, but may have outward arcs to several other nodes. 

You can keep track of the progress of the algorithm by constructing a table with headings 
such as iteration number, unsolved node connected to solved node, candidate distances 
and arcs, selected node, distance and arc.  However, for relatively small problems it is 
easier to keep track by making notations directly on the diagram.  We will use the 
following conventions for tracking the algorithm on a diagram: 

• mark the solved nodes in boldface and label them with the distance, 

• mark the arcs in the arc set in boldface. 
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Let us follow the progress of 
Dijkstra’s algorithm as we 
apply it to the network shown 
in Figure 8.3.  We will omit the 
initial diagram in which only 
node A, the origin, is solved, 
and so shown in boldface and 
labeled with the distance 0.  At 
this point, there are 3 unsolved 
nodes to consider (B, C, and D) 
because they are directly 

node (A).  The candidate 
distances are AB (0+3=3), AC 
(0+2=2), and AD (0+5=5).  
The smallest candidate distance 
is AC, so C is now a solved 
node with a distance of 2 as 
shown in Figure 8.4. 

connected to the only solved 

Now there are 3 unsolved 

There are again 3 unsolved 

Now the unsolved nodes to 

nodes to consider (B, D, and 
E). Candidate distances are AB 
(0+3=3), AD (0+5=5), CD 
(2+2=4), and CE (2+5=7).  The 
smallest candidate distance is 
AB at 3, so B is now a solved 
node, as shown in Figure 8.5. 

nodes to consider (F, D, and 
E).  Candidate distances are BF 
(3+13=16), BD (3+2=5), AD 
(0+5=5), CD (2+2=4), and CE 
(2+5=7).  The smallest 
candidate distance is CD at 4, 
so D is now a solved node, as 
shown in Figure 8.6. 

consider are F, G, and E.  
Candidate distances are BF 
(3+13=16), DF (4+6=10), DG 
(4+3=7), DE (4+4=8), and CE 
(2+5=7).  The smallest 
candidate distance is 7 with a 
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Figure 8.4: First closest node to A is C. 
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Figure 8.5: Second closest node to A is B. 
Figure 8.6: Third closest node to A is D. 
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Figure 8.7: 4th and 5th closest nodes to A are E and G (tied). 
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tie between DG and CE.  We 
can choose either candidate 
arbitrarily and update the 
diagram accordingly, 
however we know that the 
candidate not chosen this 
time will definitely be chosen 
in the next iteration, so we 
might as well update both 
candidates at once, as shown 
in Figure 8.7. 
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0 

Figure 8.8: 6th closest node to A is F. 
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Now there are only two unsolved nodes to consider: F and H.  The candidate distances 
are BF (3+13=16), DF (4+6=10), GF (7+2=9), and GH (7+6=13).  The smallest candidate 
distance is 9, so F is now a solved node, as shown in Figure 8.8. 

Finally there is only one 
remaining unsolved node: H.  
The candidate distances are 
FH (9+3=12) and GH 
(7+6=13).  So H becomes a 
solved node with a distance 
of 12, as shown in Figure 8.9.  
Since H is the destination 
node, the iterations stop.  We 
visited every node in the 
network in this small 
example, but this will not 
always happen.   
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Figure 8.9: 7th closest node to A is H. Finished! 

At this point, we know that the length of the shortest route from A to H is 12 units 
(kilometers perhaps).  But how do we determine the route?  Simply trace backwards from 
H to A, and then reverse the route that you find in this manner.  In Figure 8.9, the reverse 
route is HFGDCA, and when given in the forward order this is ACDGFH.  The reason for 
finding the route in this manner is that working backwards avoids the blind alleys that 
exist in the forward direction. 

Note that you may sometimes find a tie in the routing to an intermediate node.  For 
example, if arc BC had a length of 1, then there would be two routes from A to D with 
length 4: ACD as selected in the diagram, and ABD.  It doesn’t matter which one you 
use.  In fact, you can mark both choices on the diagram as you proceed, which will 
remind you of the alternate routes. 

What makes Dijkstra’s algorithm efficient is that it calculates the lengths of only a very 
small subset of all of the possible routes through the graph.  Once a node has been solved, 
the shortest path to the node from the origin is known.  All paths that follow on from that 
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node then have the benefit of the shortest path to that point.  The method is actually a 
specific implementation of a dynamic programming algorithm (covered later). 

It is easy to modify Dijkstra’s algorithm for use on directed graphs.  You simply need to 
respect the arc directions when selecting candidate connections between solved and 
unsolved nodes.  Think of it as finding the shortest route through a system of one-way 
streets. 

The Minimum Spanning Tree Problem 

The technical statement of the minimum spanning tree problem is simple: given a graph 
in which the arcs are labeled with the distances between the nodes that they connect, find 
a spanning tree which has the minimum total length.  Recall that a spanning tree connects 
all of the nodes in the graph, and has no cycles. 

As for the shortest route problem, the arc labels could as well be related to time or cost.  
There are many examples of applications of the minimum spanning tree problem: 

• Find the least cost set of roadways among the possible set of roadways to connect 
a set of locations. 

• Find the shortest total length of sewer to lay among the buildings in a planned 
subdivision, given the set of possible inter-building sewer routes. 

• Find the minimum total length of telephone cable to connect all of the offices in a 
building, given the possible routings of cable between offices. 

The algorithm for solving this problem is probably the simplest that you will ever learn in 
mathematical programming: 

0. Initialize: all nodes are unsolved, no arcs are in the arc set. 

1. Select any node arbitrarily and label it as solved.  Connect this node to its nearest 
neighbour: label the neighbour solved and add the connecting arc to the arc set. 

2. Identify the unsolved node that is closed to a solved node.  Label this node as 
solved and add the connecting arc to the arc set. 

3. If all nodes are solved, then stop.  Else go to Step 2. 

Upon termination of the algorithm, the minimum spanning tree is given by the arcs in the 
arc set, and the length of the minimum spanning tree is found by summing the lengths of 
the arcs in the arc set. 

In the case of a tie for the next solved node, choose arbitrarily.  You will obtain the same 
final optimum solution, but it indicates that there are multiple optima.  You will need to 
go back and enumerate them all if you need them. 
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There is again a simple diagrammatic convention for keeping track of the steps of the 
algorithm: show the solved nodes and the arcs in the arc set in boldface as you proceed.  
Let us apply this convention while solving the minimum spanning tree problem for the 
graph in Figure 8.3 that we already used for the shortest route problem.  Let us begin 
arbitrarily at node E, and label the nodes with the order in which they are solved, while 
keeping track of all of the 
notations on a copy of the 

 distance of 4 
units, so node D is the 2nd 
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BD), so we choose CD arbitraril
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Figure 8.10: Finding the minimum spanning tree. 
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Note that you will get the identical total of 18 units no matter which node you choose as 
the initial node (try it yourself).  There is more than one spanning tree that gives this 
same result, however.  We know this because of the arbitrary choice we made in solving 
the 3rd node. 

The solution method for the minimum spanning tree problem is an example of a greedy 
algorithm.  A greedy algorithm does whatever is best at the current step, without ever 
considering what the impact might be on the overall problem.  This is usually a bad idea 
in optimization because it leads to a solution that is less than optimal overall.  However, 
just choosing the closest unsolved nodes leads to an overall optimum solution in this 
special case. 

The algorithm for a maximum spanning tree is obvious: simply choose the longest solved-
to-unsolved node connection at each step.  You might want a maximum spanning tree in 
a case where profit is involved, for example, choosing television cable routings to 
connect a set of locations.  The extension to directed graphs is also straightforward: you 
can only select from among arcs that connect in the direction that you are working (either 
away from the initial node, or towards the initial node). 


	Chapter 8: An Introduction to Networks
	Basic Definitions
	The Shortest Route Problem
	The Minimum Spanning Tree Problem


